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Abstract In this paper, the Homotopy analysis method (HAM) is employed to obtain
the analytical/numerical solutions for linear and nonlinear Kolmogorov Petrovskii-
Piskunov (KPP) and fractional KPP equations. The proposed method is a powerful
and easy-to-use analytical tool for linear and nonlinear problems. This method contains
the auxiliary parameter h, which provides us with a simple way to adjust and control
the convergence region of solution series. Some illustrative examples are presented.
Moreover the use of HAM is found to be accurate, simple, convenient, flexible and
computationally attractive.
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1 Introduction

The linear and nonlinear reaction-diffusion equations play fundamental role in a
great number of various models of reaction-diffusion processes, mathematical biol-
ogy, chemistry, and genetics and so on. Thus, one of these diffusion equations is the
Kolmogorov–Petrovskii–Piskunov (KPP) equation. It has special importance in sci-
ence and engineering and constitutes an excellent model for many systems in various
fields. The subject of fractional calculus and its applications (that is, the theory of
integrals and derivatives of any arbitrary real or complex order) has gained consider-
able popularity and importance during the past three decades or so, mainly due to its
applications in diverse fields of science and engineering. Recently, the nonlinear oscil-
lation of earthquakes can be modeled with fractional derivatives [7]. There has been
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some excellent attempt to solve linear problems with multiple fractional derivatives
(the so-called multi-term equations) [7,4]. Approximate and analytical methods have
included the Adomian decomposition method (ADM) [3], the Homotopy perturbation
method (HPM) [5], the Variational iteration method (VIM) [18], and the Homotopy
analysis method (HAM) [13].

The Homotopy analysis method (HAM) [13,14,12,10,11,8] is a general analytic
scheme to get series solutions of various types of linear and nonlinear equations.
In this work, we will implement the Homotopy analysis method (HAM) to obtain
the numerical solutions of the following linear and linear KPP and fractional KPP
equations of the form considered in [16]. As to the KPP equations we refer to the
papers [2,15,9].

(i) The linear KPP equation:

∂U

∂t
= ∂2U

∂x2 + f (U ) (1)

(ii) The multiple-term fractional KPP equation:

∂αU

∂tα
= ∂2U

∂x2 − 2U 3, t > 0, 0 < α ≤ 1. (2)

(iii) The nonlinear KPP equation with time and space fractional derivatives:

∂αU

∂tα
= ∂2βU

∂x2β
− 2U 3, t > 0, α > 0, β ≤ 1. (3)

2 Definitions of fractional derivatives and integrals

In this section, we present some notations, definitions and preliminary facts that will
be used further in this work. Fractional calculus is 300 years old topic. The first serious
attempt to give logical definition is due to Liouville. Since then several definitions of
fractional integrals and derivatives have been proposed. These definitions include the
Riemann-Liouville, the Caputo, the Weyl, the Hadamard, the Marchaud, the Riesz,
the Grunwald-Letnikov and Erdelyi-Kober. The Caputo fractional derivative allows
the utilization of initial and boundary conditions involving integer order derivatives,
which have clear physically interpretations. Therefore, in this paper we shall use the
Caputo derivative Dα proposed by Caputo in his work on the theory of viscoelasticity.

In the development of theories of fractional derivatives and integrals, it appears
many definitions such as Riemann-Liouvlle and Caputo fractional differential-integral
definition as follows.

(1) Riemann-Liouville definition:

R
a Dα

t f (t) =
⎧
⎨

⎩

dm f (t)
dtm , α = m ∈ N ;

dm

dtm
1

�(m−α)

t∫

a

f (T )

(t−T )α−m+1 dT, 0 ≤ m − 1 < α < m.
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Fractional integral of order α is as follows:

R
a I α

t f (t) = 1

�(−α)

t∫

0

(t − T )−α−1 f (T )dT, α < 0.

(2) Caputo definition:

c
a Dα

t f (t) =
⎧
⎨

⎩

dm f (t)
dtm , α = m ∈ N ;

1
�(m−α)

t∫

a

f (m)(T )

(t−T )α−m+1 dT, 0 ≤ m − 1 < α < m.

3 Basic idea of homotopy analysis method (HAM)

In this section the basic ideas of the homotopy analysis method are introduced. Here
a description of the method is given to handle the general nonlinear problem.

Nu0(t) = 0, t > 0 (4)

where N is a nonlinear operator and u0(t) is unknown function of the independent
variable t.

3.1 Zero-order deformation equation

Let u0(t) denote the initial guess of the exact solution of Eq. (1), h �= 0 an auxiliary
parameter, H(t) �= 0 an auxiliary function and L is an auxiliary linear operator with
the property.

L(f(t)) = 0, f(t) = 0. (5)

The auxiliary parameter h, the auxiliary function H(t), and the auxiliary linear oper-
ator L play an important role within the HAM to adjust and control the convergence
region of solution series. Liao [13,14,12] constructs, using q ∈ [0, 1] as an embedding
parameter, the so-called zero-order deformation equation.

(1-q)L[(∅(t;q) − u0(t)] = qhH(t)N[(∅(t;q)], (6)

where ∅(t;q) is the solution which depends on h, H(t),L, u0(t) and q. When q = 0, the
zero-order deformation Eq. (6) becomes

∅(t; 0) = u0(t), (7)

And when q = 1, since h �= 0 and H(t) �= 0, the zero-order deformation Eq. (1)
reduces to,
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N[∅(t;1)] = 0, (8)

So, ∅(t;1) is exactly the solution of the nonlinear equation. Define the so-called
mth order deformation derivatives.

um(t) = 1
m!

∂m∅(t;q)
∂qm (9)

If the power series Eq. (9) of ∅(t;q) converges at q = 1, then we gets the following
series solution:

u(t) = u0(t) +
∞∑

m=1

um(t). (10)

where the terms um(t) can be determined by the so-called high order deformation
described below.

3.2 High- order deformation equation

Define the vector,

−→un={u0(t), u1(t), u2(t) . . . . . . un(t) (11)

Differentiating Eq. (6) m times with respect to embedding parameter q, the setting
q = 0 and dividing them by m!, we have the so-called mth order deformation equation.

L
[
um(t) − ℵmum−1(t)

] = hH(t)Rm(
−→um, t), (12)

where

ℵm =
{

o, m ≤ 1
1, otherwise

(13)

and

Rm(
−→um, t) = 1

(m − 1)!
∂m−1N[∅(t;q)]

∂qm−1 (14)

For any given nonlinear operator N, the term Rm(
−→um, t) can be easily expressed by

(14). Thus, we can gain u1(t), u2(t) . . . . . .. by means of solving the linear high-order
deformation with one after the other order in order. The mth –order approximation of
u (t) is given by

u(t) =
m∑

k=0

uk(t) (15)
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ADM, VIM and HPM are special cases of HAM when we set h = −1 and H(r, t) = 1.
We will get the same solutions for all the problems by above methods when we set
h = −1 and H(r, t) = 1. When the base functions are introduced the H(r, t) = 1 is
properly chosen using the rule of solution expression, rule of coefficient of ergodicity
and rule of solution existence.

4 Solving linear KPP equation by the Homotopy analysis method (HAM)

Consider the linear KPP equation:

∂u

∂t
= ∂2u

∂x2 − u, x, t ∈ R (16)

Subject to the initial condition

u (x, 0) = e−x + x, x ∈ R (17)

We apply the Homotopy analysis method to Eqs. (16) and (17), as follows:
since m ≥ 1, χm = 1and set h = −1 and H(r,t) = 1 in Eq. (12), then it becomes

um(x, t) = um−1(x, 0) − L−1(
m(um−1, x, t)) (18)

where


m(um−1, x, t) = ∂um−1

∂t
− ∂2um−1

∂x2 + um−1 (19)

and the initial condition

u0(x, t) = e−x + x (20)

We can obtain the results using Eq. (19)

u1(x, t) = e−x + x − xt (21)

u2(x, t) = e−x + x − xt + xt2

2
(22)

u3(x, t) = e−x + x − xt + xt2

2
− 1

6xt3 (23)

u4(x, t) = e−x + x − xt + xt2

2
− 1

6xt3 + 1

24xt4 (24)

Then the final solution is

u(x, t) = e−x + x

(

1 − t + t2

2
− t3

6
+ t4

24
− . . .

)

u(x, t) = e−x + xe−t . (25)
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Example 4.1 We consider the following reaction-diffusion equation

∂u

∂t
= ∂2u

∂x2 + 2tu, x, t ∈ R (26)

Subject to the initial condition

u(x, 0) = ex , x ∈ R (27)

We apply the Homotopy analysis method to Eqs. (26) and (27) as follows:
since m ≥ 1, χm = 1 and set h = −1 and H(r,t) = 1 in Eq. (12), then it becomes

um(x, t) = um−1(x, 0) − L−1(
m(um−1, x, t)) (28)

where


m(um−1, x, t) = ∂um−1

∂t
− ∂2um−1

∂x2 + 2tum−1 (29)

and the initial condition

u0(x, t) = ex (30)

We can obtain the following results using Eq. (29)

u1(x, t) = ex (1 + t + t2) (31)

u2(x, t) = ex
(

1 + t + t2

2!
)

(1 + t2) (32)

u3(x, t) = ex
(

1 + t + t2

2! + t3

3!
) (

1 + t2 + t4

2! + t6

3!
)

(33)

Then the final solution in a closed form is

u(x, t) = ex+t+t2
. (34)

Homotopy analysis method (HAM) provides to adjust and control the convergence
rate of the solution in the particular region with h.

5 The HAM for the multiple-term fractional KPP equation

In this section, to establish the effectiveness and the applicability of our approach,
we will implement the HAM to construct numerical solutions for the multiple-term
fractional KPP equation in the form [16]

∂αu

∂tα
= ∂2u

∂x2 − 2u3, t > 0, 0 < α ≤ 1, (35)
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Subject to the initial condition

u(x, 0) =
2xcs

(
x2, 1√

2

)

dn
(

x2, 1√
2

) , (36)

where cs
(

x2, 1√
2

)
and dn

(
x2, 1√

2

)
are Jacobi elliptic functions.

To solve the above problem by HAM, we select the auxiliary parameters as follows:

L F (φ(x, t; p)) = Dα
t [φ (x, t; p)] (37)

with the property L F (c1) = 0.
Using the above definition, we construct the zeroth-order deformation equations

(1 − p)L F [φ(x, t; p) − χmu0(x, t)] = phNF [φ(x, t; p)] (38)

Obviously, when p = 0 and p = 1.

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t) (39)

Differentiating the zeroth-order deformation Eq. (38) m times with respect to p,
and finally dividing by m!, we have

L F (um(x, t) − χmum−1(x, t)) = h
m
[−−→um−1

]
(40)

where


m
[−−→um−1

] = Dα
t um−1 (x, t) + ∂2um−1

∂x2 − 2u3
m−1 (41)

On applying the operator Jα
t both sides of the Eq. (40), we get

um(x, t) = χmum−1(x, t) + h Jα
t 
 [−−→um−1

]
(42)

Subsequently solving mth-order deformation equations one has

u0(x, t) =
2xcs

(
x2, 1√

2

)

dn
(

x2, 1√
2

) , (43)

u1(x, t) =
6xtα

[
2 − 2sn2

(
x2, 1√

2

)
+ sn4

(
x2, 1√

2

)]

sn2
(

x2, 1√
2

)
dn2

(
x2, 1√

2

)
� (α + 1)

, (44)

. . .. . .. . .. . .. . .. . .. . .

. . .. . .. . .. . .. . .. . .. . .

and so on. Then u(x, t) = uo + u1 + u2 + . . .
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6 The HAM for the time and space fractional nonlinear KPP equations

We consider the time and space fractional nonlinear KPP equation

∂αu

∂tα
= ∂2βu

∂x2β
+ 2u3, t > 0, 0 < α, β ≤ 1. (45)

With the initial condition

u(x, 0) = x2. (46)

To solve the above problem by HAM, we select the auxiliary parameters as follows:

L F (φ(x, t; p)) = Dα
t [φ(x, t; p)] (47)

with the property L F (c1) = 0.
Using the above definition, we construct the zeroth-order deformation equations

(1 − p)L F [φ (x, t; p) − χmu0 (x, t)] = phNF [φ(x, t; p)] (48)

Obviously, when p = 0 and p = 1.

φ(x, t; 0) = u0(x, t), φ(x, t; 1) = u(x, t) (49)

Differentiating the zeroth-order deformation Eq. (38) m times with respect to p,
and finally dividing by m!, we have

L F (um(x, t) − χmum−1(x, t)) = h
m
[−−→um−1

]
(50)

where


m
[−−→um−1

] = Dα
t um−1 (x, t) − ∂2βum−1

∂x2β
− 2u3

m−1 (51)

On applying the operator Jα
t both sides of the Eq. (40), we get

um(x, t) = χmum−1(x, t) + h Jα
t 
 [−−→um−1

]
(52)

Subsequently solving mth-order deformation equations one has

u0(x, t) = x2. (53)

u1(x, t) = tα

�(α + 1)

[
2x2−2β

� (3 − 2β)
− 2x6

]

(54)

. . .. . .. . .. . .. . ..

. . .. . .. . .. . .. . ...

and so on. Then we can calculate the approximate solution of the above problem. Our
results can be compared with K. A. Gepreel results [5].
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7 Conclusion

In this work, the HAM is used to obtain the approximate/analytical solutions of the
various linear and nonlinear Kolmogorov–Petrovskii–Piskunov (KPP) and fractional
KPP equations with initial conditions. This scheme provides us a simple way to adjust
and control the convergence of the series solution by choosing proper values of aux-
iliary and homotopy parameters. In conclusion, HAM gives accurate approximate
solution for nonlinear problems in comparison with other methods.
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